Citation: Qingjun Meng,?Aizhi Guo,?Xiangteng Wang,?Shuofan Wang, 2018:?Source parameter and rupture process of the MW6.3 early strong aftershock immediately following the 2016 MW7.8 Kaikoura earthquake (New Zealand),?Earthquake Science. shu

Source parameter and rupture process of the MW6.3 early strong aftershock immediately following the 2016 MW7.8 Kaikoura earthquake (New Zealand)

Figures(9)?/?Tables(2)

  • The 2016 MW7.8 Kaikoura (New Zealand) earthquake was the most complex event ever instrumentally recorded and geologically investigated, as it ruptured on more than 12 fault segments of various geometries. To study the mainshock rupture characteristics, geodetic methods like InSAR and GPS play an essential role in providing satisfactory spatial resolution. However, early strong aftershocks may cause extra ground deformation which bias the mainshock rupture inversion result. In this paper, we will focus on studying the MW 6.3 aftershock, which is the only M6+ thrust slip aftershock that occurred only 30 minutes after the Kaikoura mainshock. We will relocate the hypocenter of this event using the hypo2000 method, make the finite fault model (FFM) inversion for the detailed rupture processes and calculate the synthetic surface displacement to compare with the observed GPS data and figure out its influence on the mainshock study. Although we are not able to resolve the real ruptured fault of this event because of limited observation data, we infer that it is a west-ward dipping event of oblique slip mechanism, consistent with the subfault geometries of the Kaikoura mainshock. According to the inverted FFM, this event can generate 10–20 cm ground surface displacement and affect the ground displacement observation at nearby GPS stations.
  • 加载中
    1. Chang CH, Wu YM, Zhao L and Wu FT (2007) Aftershocks of the 1999 Chi-Chi, Taiwan, earthquake: The first hour. Bull Seismol Soc Amer 97(4): 1 245–1 258 doi: 10.1785/0120060184

    2. Cesca S, Zhang Y, Mouslopoulou V, Wang R, Saul J, Savage M, Heimann S, Kufner S-K, Oncken O and Dahm T (2017) Complex rupture process of the Mw7.8, 2016, Kaikoura earthquake, New Zealand, and its aftershock sequence. Earth Planet. Sci. Lett. 478: 110–120 doi: 10.1016/j.jpgl.2017.08.024

    3. Chen W, Ni S, Kanamori H, Wei S, Jia Z, and Zhu L (2015) CAPjoint, a computer software package for joint inversion of moderate earthquake source parameters with local and teleseismic waveforms. Earth Planet Sci Lett 86(2A): 432–441 doi: 10.1785/0220140167

    4. Clark, K J, Nissen E K, Howarth J D, Hamling I J, Mountjoy J J, Ries W F, … Strong D T (2017) Highly variable coastal deformation in the 2016 Mw7.8 Kaikōura earthquake reflects rupture complexity along a transpressional plate boundary. Earth Planet. Sci. Lett. 474: 334–344 doi: 10.1016/j.jpgl.2017.06.048

    5. Du H, Zhang X, Xu L, Feng W, Yi L and Li P (2018) Source complexity of the 2016 Mw7.8 Kaikoura (New Zealand) earthquake revealed from teleseismic and InSAR data. Earth Planet Phys 2: 1–17 doi: 10.26464/epp2018029

    6. Duputel, Z., and L. Rivera (2017) Long-period analysis of the 2016 Kaikoura earthquake. Phys. Earth Planet. Inter. 265: 62–66 doi: 10.1016/j.pepi.2017.02.004

    7. Eberhart-Phillips D, and Bannister S (2010) 3-D imaging of Marlborough, New Zealand, subducted plate and strike-slip fault systems. Geophys J Int 182: 73–96 doi: 10.1111/j.1365-246X.2010.04621.x

    8. Hamling, I. J., et al., (2017). Complex multifault rupture during the 2016 Mw 7.8 Kaikoura earthquake, New Zealand. Science, 356, eaam7194, doi:10.1126/science.aam7194.

    9. Hartzell. SH, and Heaton TH (1983) Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake. Bull Seismol Soc Am 73(6A): 1 553–1 583

    10. Holden C, Kaneko Y, D’Anastasio E, Benites R, Fry B and Hamling I.J. (2017) The 2016 Kaikōura earthquake revealed by kinematic source inversion and seismic wavefield simulations: Slow rupture propagation on a geometrically complex crustal fault network. Geophys Res Lett 44(22) doi: 10.1002/2017GL075301

    11. Ji, C., et al., (2002) Source description of the 1999 Hector Mine, California earthquake, part I: Wavelet domain inversion theory and resolution analysis. Bull. Seismol. Soc. Am. 92: 1 192–1 207 doi: 10.1785/0120000916

    12. Kaiser AE, Balfour N, Fry B, Holden C, Litchfield N, Gerstenberger M, D’Anastasio E, Horspool N, McVerry G, Ristau J, Gledhill K, Bannister S, Christopherson A, Clark K, Power W, Rhoades D (2017) The 2016 Kaikōura (New Zealand) earthquake: preliminary seismological report. Seismol Res Lett 88(3) doi: 10.1785/0220170018

    13. Kaneko Y, Fukuyama E and Hamling I J (2017) Slip-weakening distance and energy budget inferred from near-fault ground deformation during the 2016 Mw7.8 Kaikoura earthquake. Geophys. Res. Lett. 44: 4 765–4 773 doi: 10.1002/2017GL073681

    14. Kikuchi M, Kanamori H and Satake K (1993) Source complexity of the 1988 Armenian earthquake: Evidence for a slow after-slip event. J Geophys Res 98(B9): 15 797–15 808 doi: 10.1029/93JB01568

    15. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science, 220(4598):671

    16. Klein FW (2002). User’s guide to HYPOINVERSE2000, a Fortran program to solve for earthquake locations and magnitudes. US Geol Surv Open-File Rep, 02-172, 123 pp., 01-113, Menlo Park, California.

    17. Lawson CL and Hanson R J (1995) Solving Least Squares Problems, Classics in Applied Mathematics, vol. 15, pp. 337, Society for Industrial Mathematics, Englewood Cliffs, N. J.

    18. Lengline O, Enescu B, Peng Z and Shiomi K (2012) Decay and migration of the early aftershock activity following the Tohoku Mw9.0 2011 earthquake. Geophys Res Lett 39 doi: 10.1029/2012GL052797

    19. Leonard M (2010) Earthquake fault scaling: Self-consistent relating of rupture length, width, average displacement, and moment release. Bull. Seismol. Soc. Am 100: 1 971–1 988 doi: 10.1785/0120090189

    20. Lin F, Ritzwoller M H, Townend J, Savage M and Bannister S (2007) Ambient noise Rayleigh wave tomography of New Zealand. Geophys. J. Int. 170(2) doi: 10.1111/j.1365-246X.2007.03414.x

    21. Lo Y, Zhao L, Xu X, Chen J and Hung S (2018) The 13 November 2016 Kaikoura, New Zealand earthquake: rupture process and seismotectonic implications. Earth Planet Phys 2: 139–149

    22. Okada Y (1992) Internal deformation due to shear and tensile faults in a half-space. Bull. Seismol Soc Am 82: 1 018–1 040

    23. Omori, F. (1894) Investigation of Aftershocks. Rep. Earthq. Inv. Comm. 2: 103–39

    24. Stirling M W, Litchfield N, Villamor P, Van Dissen R, Nicol A, Pettinga J, Barnes P, Langridge R, Little T, Barrell D et al., (2017) The Mw 7.8 2016 Kaikōura earthquake: surface fault rupture and seismic hazard context. Bull NZ Soc Earthqu Eng 50: 73–84

    25. Tu R, Wang, R, Ge M, Walter T R, Ramatschi M, Milkereit C, Bindi D, and Dahm T (2013) Cost-effective monitoring of ground motion related to earthquakes, landslides or volcanic activity by joint use of a single-frequency GPS and a MEMS accelerometer, Geophys. Res. Lett. 40: 3 825–3 829 doi: 10.1002/grl.50653

    26. Wallace L M, Beavan R J, McCaffrey R, Berryman K R and Denys P (2007) Balancing the plate motion budget in the South Island, New Zealand using GPS, geological and seismological data. Geophys J Int 168(1): 332–352 doi: 10.1111/j.1365-246X.2006.03183.x

    27. Wang WM, Zhao L F, Li J Yao ZX (2008) Rupture process of the Ms8.0 Wenchuan earthquake of Sichuan, China. Chinese Journal of Geophysics 51(5): 1 403–1 410 doi: 10.1785/0120120119

    28. Wang T, Wei S, Shi X, Qiu Q, Li L, Peng D, Weldon R J and Barbot S (2018) The 2016 Kaikōura earthquake: Simultaneous rupture of the subduction interface and overlying faults. Earth Planet. Sci. Lett. 482: 44–51 doi: 10.1785/0120120119

    29. Yue H, and Lay T (2013) Source rupture models for the Mw 9.0 2011 Tohoku earthquake from joint inversions of high-rate geodetic and seismic data. Bull Seismol Soc Am 103: 1 242–1 255 doi: 10.1785/0120120119

    30. Zhang H, Koper K D, Pankow K and Ge Z (2017) Imaging the 2016 MW 7.8 Kaikoura, New Zealand, earthquake with teleseismic P waves: A cascading rupture across multiple faults. Geophys Res Lett 44 doi: 10.1002/2017GL073461

    31. Zhang Y, Xu LS, Chen Y T, Feng WP and Du HL (2009) Source process of MS6.4 earthquake in Ning’er, Yunnan in 2007. Science China: Earth Sciences 52(2): 180–188 doi: 10.1007/s11430-009-0016-0

  • 加载中
    1. [1]

      Mian Liu ,?Gang Luo ,?Hui Wang ,?Seth Stein , 2014:?Long aftershock sequences in North China and Central US:implications for hazard assessment in mid-continents,?Earthquake Science,?27,?27-35. doi:?10.1007/s11589-014-0066-z

    2. [2]

      Heming Xu ,?Yifeng Cui ,?James H. Dieterich ,?Keith Richards-Dinger ,?Efecan Poyraz ,?Dong Ju Choi , 2014:?Aftershock sequence simulations using synthetic earthquakes and rate-state seismicity formulation,?Earthquake Science,?27,?401-410. doi:?10.1007/s11589-014-0087-7

    3. [3]

      Jianwen Liang ,?Zhongxian Liu , 2009:?Diffraction of plane P waves by a canyon of arbitrary shape in poroelastic half-space (Ⅱ): Numerical results and discussion,?Earthquake Science,?22,?223-230. doi:?10.1007/s11589-009-0223-y

    4. [4]

      Jisheng Zhao ,?Yanqiong Liu ,?Zhenghua Zhou ,?Farah Lazzali , 2012:?Spatio-temporal characteristics of aftershocks and seismogenic structure of the 2011 MW9.0 Tohoku earthquake, Japan,?Earthquake Science,?25,?219-227. doi:?10.1007/s11589-012-0847-1

    5. [5]

      Jianshe Lei ,?Guangwei Zhang ,?Furen Xie , 2014:?The 20 April 2013 Lushan, Sichuan, mainshock, and its aftershock sequence: tectonic implications,?Earthquake Science,?27,?15-25. doi:?10.1007/s11589-013-0045-9

    6. [6]

      Shaochuan Lü ,?Yong Li , 2011:?Spatio-temporal epidemic type aftershock sequence model for Tangshan aftershock sequence,?Earthquake Science,?24,?401-408. doi:?10.1007/s11589-011-0802-6

    7. [7]

      Wei Yang ,?Hongkui Ge ,?Baoshan Wang ,?Jiupeng Hu ,?Songyong Yuan ,?Sen Qiao , 2014:?Active source monitoring at the Wenchuan fault zone: coseismic velocity change associated with aftershock event and its implication,?Earthquake Science,?27,?599-606. doi:?10.1007/s11589-014-0101-0

    8. [8]

      Hong Zhou , 2016:?Coseismic displacement estimate of the 2013 MS7.0 Lushan, China earthquake based on the simulation of near-fault displacement field,?Earthquake Science,?29,?327-335. doi:?10.1007/s11589-016-0169-9

    9. [9]

      Ruizhi Wen ,?Zhenghua Zhou ,?Xiaojun Li ,?Cheng Yang ,?Yuhuan Wang ,?Quan Liu ,?Xiaotao Yin ,?Mindu Zhou ,?Jianwen Cui , 2009:?The strong ground motion observation for the Wenchuan aftershock,?Earthquake Science,?22,?181-187. doi:?10.1007/s11589-009-0181-4

    10. [10]

      Hu-Rong Duan ,?Sheng-Lei Chen ,?Run Li ,?Quan-Chao Yan , 2018:?Fault geometrical model of Dujiangyan section in Longmenshan fault zone,?Earthquake Science,?31,?126-136. doi:?10.29382/eqs-2018-0126-2

    11. [11]

      Feng Long ,?Guixi Yi ,?Xueze Wen ,?Zhiwei Zhang , 2012:?Spatio-temporal variation of the stress field in the Wenchuan aftershock region,?Earthquake Science,?25,?517-526. doi:?10.1007/s11589-012-0875-x

    12. [12]

      Jeen-Hwa Wang , 2016:?A way of estimating the characteristic slip displacement,?Earthquake Science,?29,?35-43. doi:?10.1007/s11589-015-0138-8

    13. [13]

      Yujun Sun ,?Mian Liu ,?Shuwen Dong ,?Huai Zhang ,?Yaolin Shi , 2015:?Active tectonics in Taiwan:insights from a 3-D viscous finite element model,?Earthquake Science,?28,?353-363. doi:?10.1007/s11589-015-0137-9

    14. [14]

      Zhe Jia ,?Weiwen Chen ,?Risheng Chu , 2013:?Preliminary study on aftershock decay rate of the 2013 Ms7.0 Lushan earthquake,?Earthquake Science,?26,?185-190. doi:?10.1007/s11589-013-0050-z

    15. [15]

      Panayiotis A. Varotsos ,?Nicholas V. Sarlis ,?Efthimios S. Skordas ,?Stavros-Richard G. Christopoulos ,?Mary S. Lazaridou-Varotsos , 2015:?Identifying the occurrence time of an impending mainshock: a very recent case,?Earthquake Science,?28,?215-222. doi:?10.1007/s11589-015-0122-3

    16. [16]

      Jeen-Hwa Wang , 2013:?A theoretical study of correlation between scaled energy and earthquake magnitude based on two source displacement models,?Earthquake Science,?26,?373-376. doi:?10.1007/s11589-014-0068-x

    17. [17]

      Sanming Luo ,?Liming Fu ,?Shuang Zhu ,?Qinglong He ,?Wenni Wan ,?Bo Yang , 2013:?Processes of the displacement field change of the 2009 April 6 MW6.3 L'Aquila earthquake using persistent scatterer and small baseline methods,?Earthquake Science,?26,?293-299. doi:?10.1007/s11589-013-0028-x

    18. [18]

      Xiqiang Liu ,?Chauhuei Chen ,?Yanwen Zhou ,?Junhao Qu , 2009:?Intrinsic and attenuative dispersion characteristics of direct P-waves in and near the source area of the 1999 MW7.6 Chi-Chi, Taiwan, earthquake before and after the mainshock,?Earthquake Science,?22,?33-44. doi:?10.1007/s11589-009-0033-2

    19. [19]

      Yu Zhang ,?Yixian Xu ,?Jianghai Xia ,?Ping Ping ,?Shuangxi Zhang , 2014:?Viscoelastic representation of surface waves in patchy saturated poroelastic media,?Earthquake Science,?27,?421-431. doi:?10.1007/s11589-013-0049-5

    20. [20]

      Chengyu Sun ,?Xingyao Yin ,?Yunfei Xiao , 2011:?Simulation and analysis of point-source surface wave fields,?Earthquake Science,?24,?419-426. doi:?10.1007/s11589-011-0804-4

Metrics
  • PDF Downloads(8)
  • Abstract views(393)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1.?

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
  • Copyright ? Earthquake Science
  • Address:?No.5 Minzu Daxue Nan Rd, Haidian District, Beijing 100081, China
  • Telephone:?+86-10-68729344?Fax:?+86-10-68729330
  • E-mail:?equsci@126.com

/

Return